
Naval Research Laboratory
Washington, DC 20375-5320

CGI
Programming

in Perl
Course Notes

Michael G. Vonk
Center for Computational Science
(202)767-3884
michael.vonk@nrl.navy.mil

Instructor:

July 31, 1998

CGI Programming in Perl

1. Introduction..1

2. CGI Overview ..2

3. Configuring the Web Server ...3
3.1. NCSA httpd...3
3.2. Personal Web Sharing..4

4. CGI Input and Output..5
4.1. Input ...5
4.2. Output..7

5. Dynamic Web Pages..8

6. Web Forms ..9
6.1. HTML Form Specifications ...9
6.2. Handling Form Results ...10

7. Security ..11

8. Server Side Includes ...12
8.1. Configuring the Web Server ...13
8.2. SSI Directive Format ..13
8.3. SSI Directives ..14
8.4. SSI Security Considerations ..15

9. References ...16

10. Summary ...17

1

CGI Programming in Perl

1. Introduction

Perl is an easy to use, public domain scripting language that is
available for all the major operating systems. For these reasons
it has become the "language of choice" for Web programming.
Topics covered in this class include:

• the Common Gateway Interface (CGI)
• configuring the Web server to allow CGI
• CGI input and output
• generating dynamic Web pages
• processing form results
• security
• server side includes

This class expands on material covered in the "Web Publishing"
and "Programming in Perl" classes. Numerous public domain
and commercial Web servers are available, including:

• NCSA httpd (UNIX)
• Personal Web Sharing (included with Macintosh OS 8.0)
• Microsoft Internet Information Server

(Windows 95/NT)

All examples from this class, along with pointers to additional
information, can be found on the Web at:

http://amp.nrl.navy.mil/code5595/
 ccs-training/cgi

2

CGI Programming in Perl

2. CGI Overview

CGI scripts allow you to tailor your Web server so that it can
communicate with other program on the server, rather than just
serving "static" documents. CGI programs allow you to:

• process results from HTML forms
• interact with external programs whose output is not

directly accessible on the Web (to interact with a database,
for example)

• generate Web pages on the fly

When a browser requests the URL corresponding to CGI
script, the server executes the program and sends output back
to the browser.

Data is passed to the CGI program via standard input and
environment variables. Output from the CGI program is sent
back to the browser (typically as HTML code).

Note: CGI programs can be written in any language,
although Perl is preferred for its ease of use.

Client—
Web Browser Web Server

CGI Program

Standard Input/
Environment Variables

Standard Output

3

CGI Programming in Perl

3. Configuring the Web Server

Depending on which Web server you are using, several
configuration parameters must be set in order to execute CGI
programs.

3.1. NCSA httpd

On a UNIX system running the NCSA httpd Web server,
CGI scripts are typically stored in a central location as specified
with the ScriptAlias directive in the server resource map file
(srm.conf):

ScriptAlias /cgi-bin/ /usr/local/www/cgi-bin/

If the user accesses a URL such as:

http:// yourserver.domain /cgi-bin/hello.cgi

then the file "/usr/local/www/cgi-bin/hello.cgi " will
be executed. Multiple ScriptAlias directives can be specified.

To allow CGI scripts to be placed anywhere on the server, you
can use the AddType directive in srm.conf:

AddType application/x-httpd-cgi .cgi .pl .sh

In this case, all files with the specified extensions will be exe-
cuted as CGI programs.

Note: UNIX CGI scripts must be world executable.

The advantage of placing all CGI scripts in one
directory is that if poorly written, they can create
problems.

4

CGI Programming in Perl

3.2. Personal Web Sharing

Under Macintosh OS 8.0, Web sharing is enabled via the "Web
Sharing" control panel. By default, Web pages are stored in the
"Web Pages" folder at the root level of the hard disk. CGI scripts
are typically created using MacPerl and stored in the "Web
Pages" folder or one of its subfolders.

Note: In MacPerl, select the "CGI Script" option in the
"Save As..." dialog box.

5

CGI Programming in Perl

4. CGI Input and Output

When a CGI script is invoked, the Web server provides it
with its own special operating environment, including standard
input and output and the ability to generate error messages:

4.1. Input

There are three ways in which the browser can send data to a
CGI script:

1. As a "query string" appended to a URL:

 URL? query-string

This happens as a result of one of three things:

• a form using the GET method
• a searchable index (an HTML file that contains

an ISINDEX element)*
• a server-side image map*

The query string is available as an environment variable.

* Considered obsolete—forms and client-side image maps are
much more useful.

Environment Variables

Standard Input

Standard Error
 (Web server log file)

Standard Output
 (Web browser)

CGI Script

6

CGI Programming in Perl

2. As standard input from a form using the POST method.

3. As extra path information in the URL. Directory-like
information included inside the URL itself immediately
following the name of the CGI program.

 URL/ extra-path-info

Extra path information is placed in environment variables
PATH_INFO and PATH_TRANSLATED.

4.1.1. Environment Variables

Numerous environment variables are accessible from a CGI
script and are stored in the associative array %ENV. The follow-
ing could be used to print a sorted list of all of them:

foreach $key (sort keys %ENV) {
 print "$key = $ENV{$key}\n"
}

4.1.2. Standard Input

See section on handling form results for examples.

7

CGI Programming in Perl

4.2. Output

Standard output from a CGI script is sent back to the browser
and can come in many forms:

• HTML code
• plain text
• images (GIF or JPEG)
• audio
• etc.

Normally, the Web browser uses file extensions to determine
how to display files it retrieves. For example, HTML files have
the extension ".html" and are displayed according to their
embedded tags.

Standard output doesn’t have a file extension, however. So we
output a header to describe the type of data we’re returning, fol-
lowed by a blank line, and then the actual data. For example:

print "Content-type: text/html\n";
print "\n"

or

print "Content-type: image/gif\n";
print "\n"

Error messages are generally output to the Web server log files,
but can be merged with standard output and sent to the browser
using:

open(STDERR,">STDOUT");

8

CGI Programming in Perl

5. Dynamic Web Pages

Web pages can be generated "on the fly" in order to:

• incorporate dynamic information
• format data not directly accessible on the Web
• serve as confirmation notices for forms processing

The generated data is passed back to the client (Web browser)
via standard output. The following is the ubiquitous "Hello
world" program written as a CGI script:

Example 1 hello.cgi

This script, placed in the cgi-bin directory (if necessary) and
made executable, could be referenced from another page as fol-
lows:

Hello

print "Content-type: text/html\n";
print "\n";
print "<html>\n";
print "<head>\n";
print " <title>CGI Example</title>\n";
print "</head>\n";
print "<body>\n";
print "<h1>CGI Example</h1>\n";
print "Hello, world...<p>\n";
print "</body>\n";
print "</html>\n";

9

CGI Programming in Perl

6. Web Forms

Creating Web-based forms involves two steps:

• writing an HTML form specification
• writing a script to handle the results of the form

Form results are passed to the form handler script via standard
input. An HTML page is typically written back to the browser
as a confirmation that the form was submitted.

6.1. HTML Form Specifications

Form specifications are covered in the "Publishing on the Web"
class (see its Web companion page). A basic form is as follows:

Example 2 basic-form.html

<html>
<h1>Basic Form</h1>

<form method="post"
 action="/cgi-bin/echo-handler.cgi">

Enter your name and favorite color:<p>

Name: <input type=text name=user>

Color: <input type=text name=color><p>

<input type=submit value="Submit">
<input type=reset value="Reset Form">

</form>
</html>

10

CGI Programming in Perl

6.2. Handling Form Results

When the user clicks on the "submit" button, form results
(a list of field names and their associated values) are passed to
the form handler program specified in the "action" attribute.
The raw data from the previous form might appear as:

user=Michael&color=Blue

The process of handling the form results can be summarized as
follows:

• Read the raw data
• Split data on "&" into name-value pairs
• For each pair:

 Split pair on "=" into name and value
 Decode name and value

• Add name and its value to associative array
• Process data (save to file, mail, or whatever)
• Write confirmation page back to browser

Certain characters are encoded and must be decoded before
they can be used. Spaces are converted into plus signs and other
special characters are converted into their hexidecimal values.

11

CGI Programming in Perl

7. Security

Everytime a CGI script is invoked, a program is executed on the
Web server, potentially leading to security problems. Consider
the following innocent looking example:

• an HTML form requests the user to enter a name of a file
on the server to be displayed

• the user enters "hello.cgi; rm -rf /"
• the form handling program issues the UNIX cat command

to display the file (ie. "cat hello.cgi; rm -rf /")
• the webmaster wonders where all their files have gone

For additional information, see the references on the companion
page.

12

CGI Programming in Perl

8. Server Side Includes

Server Side Includes (SSIs) are not really CGI programs, but are
useful in many ways. They are special directives embedded in
HTML documents that can be used to:

• Include files (boilerplate text)
• Display environment variables and file statistics
• Execute external programs and CGI scripts

While SSIs provide many time saving benefits, as compared to
writing CGI scripts to create dynamic Web pages, there are two
disadvantages:

• performance degradation
• security considerations

Note: SSIs are not supported by all servers—they are sup-
ported by the NCSA and Netscape servers, but are
not currently supported by the CERN server.

13

CGI Programming in Perl

8.1. Configuring the Web Server

Before SSIs can be used, they must be enabled on the server.
Using the NCSA httpd Web server, this involves two types of
configuration:

1. Modifying the server configuration file (srm.conf) to
specify the files that should be parsed for directives:

AddType text/x-server-parsed-html .shtml

(You could use .html, but then all HTML files would be
parsed, thus leading to severely degraded performance.)

2. Setting access control options (access.conf) to indicate
what type of SSI directives can be used:

• To display environment variables and file statistics,
use the Includes option

• To execute external programs, use the Exec option

For example:

 Options Include ExecCGI
or

 Options IncludesNoCGI

8.2. SSI Directive Format

SSI directives are specified as follows:

<!--# command parameter =" argument "-->

Do not put spaces between the <!-- and #command.

14

CGI Programming in Perl

8.3. SSI Directives

The following SSI directives are available:

Displaying
Environment
Variables

All the environment variables available to
CGI scripts as well as several others can be
displayed:

<!--#echo var=" variable "-->

Including Files Files in the current directory or in a path
relative to the server root can be included:

<!--#include file=" name"-->
<!--#include virtual=" path "-->

Displaying File
Statistics

The size and last modification date of a file
can be displayed:

<!--#fsize file=" name"-->
<!--#flastmod file=" name"-->

Executing
External
Programs and
CGI Scripts

External programs can be executed using:

<!--#exec cmd=" command"-->

If environment variables are used in com-
mand, they must be prefixed with '$'.

Tailoring SSI
Output

The format of error messages, file sizes, and
dates can be tailored as follows:

<!--#config errmsg=" msg"-->
<!--#config sizefmt=" fmt "-->
<!--#config timefmt=" fmt "-->

15

CGI Programming in Perl

8.4. SSI Security Considerations

Allowing the execution of commands can lead to security prob-
lems. For example, some pages allow users to enter HTML code
in comment fields for example, and then display this code. The
user could then enter:

<!--#exec cmd="rm -rf /"-->

Well written CGI scripts strip SSI commands from input, thus
eliminating the problem.

16

CGI Programming in Perl

9. References

Many online and hardcopy references were used in creating this
class. Among the best of these are the following:

• "Learning Perl, 2nd Edition"
by Randal L. Schwartz & Tom Christiansen
O’Reilly and Associates, Inc.
ISBN: 1-56592-284-0

• "CGI Programming on the World Wide Web"
by Shishir Gundavaram
O’Reilly and Associates, Inc.
ISBN: 1-56592-168-2

• "Webmaster in a Nutshell"
by Stephen Spainhour and Valerie Quercia
O’Reilly and Associates, Inc.
ISBN: 1-56592-229-8

• the "Perl reference materials" Web page at:
http://www.eecs.nwu.edu/perl/perl.html

• the newsgroup comp.lang.perl

17

CGI Programming in Perl

10. Summary

CGI scripts greatly increases the effectiveness of your Web site.
Using CGI you can generate dynamic, rather than only static,
Web pages. Documents not previously viewable within a Web
browser, a database for example, can now be formatted and dis-
played. You can also efficiently process form results.

And all this comes at a very small price—once you understand
how CGI scripts handle input and generate output, all the rest is
just programming.

